

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY

JNANASAGARA CAMPUS, BALLARI-583105

Department of Studies in Botany

II Semester Syllabus

Bachelor of Science

Effective from Academic Year 2021-22

(Revised as per NEP-2020)

DSC2 : DIVERSITY OF NON-FLOWERING PLANTS

Course Title: Diversity of non-flowering plants	Course code: 21BSC2C2DPL	
Total contact hours: 56	Course credits –04	
Internal Assessment: 40 marks	Duration of SEE: 03 hours	
Semester end Examination Marks: 60 marks		

Course Outcome (COs)

At the end of the course, studentswill be able to understand:

- 1. The diversity and distinguishing characteristics of nonflowering plants.
- 2. The morphology, anatomy, reproduction and life cycle of Algae, Bryophytes,
- 3. Pteridophytes, Gymnosperms and their ecological andevolutionary significance.
- 4. Paleobotanical evidences supporting origin of non vascular plants.

Unit	Course content	Hours
1	Chapter No. 1. Algae - Introduction and historical development in Biology. General characteristics and classification of algae, Diversity- habitat, thallus organization, pigments, reserve food, flagella types, life-cycle and alteration of generation in Algae. Distribution of Algae.	12
	Chapter No. 2. Morphology and reproduction and life-cycles of <i>Nostoc, Oedogonium, Chara, Sargassum</i> and <i>Polysiphonia</i> . Diatoms and their importance. Blue-green algae – A general account. Algal blooms and toxins.	
	Chapter No. 3. Algal cultivation – Cultivation of microalgae – <i>Spirulina</i> and <i>Dunaliella</i> ; Algal cultivation methods in India. Algal products – Food and Neutraceuticals, Feed Stocks, food colorants, Fertilizers, aquaculture feed, cosmetics, medicines, dietary fibers from algae and uses.	

2	Chapter No. 4. Bryophytes – General characteristics and classification of Bryophytes, Diversity-habitat, thallus structure, Gametophytes and sporophytes	11
	Chapter No. 5. Distribution, morphology, anatomy, reproduction and life cycles of <i>Riccia</i> , <i>Anthoceros</i> and <i>Funaria</i> . Ecological and economic importance of Bryophytes. Fossil Bryophytes	
3	Chapter No. 6. General characteristics and classification; structure of sporophytes and life-cycles. Distribution, morphology, anatomy, reproduction and life-cycles in <i>Selaginella</i> , <i>Equisetum</i> , <i>Pteris</i> and <i>Azolla</i>	11
	Chapter No- 7 . A brief account of heterospory and seed habit. Stelar evolution in Pteridophytes. Affinities and evolutionary significance of Pteridophytes. Ecological and economic importance.	
4	Chapter No. 8. Gymnosperms: General characteristics. Distribution and classification of Gymnosperms. Study of the habitat, distribution, habit, anatomy, reproduction and life-cycles in <i>Cycas</i> , <i>Pinus</i> and <i>Gnetum</i> .	11
	Chapter No. 9 Affinities and evolutionary significance of Gymnosperms. Economic importance of Gymnosperms – food, timber, industrial uses and medicines	
5	Chapter No. 10. Origin and evolution of plants: Origin and evolution of plants through Geological time scale.	11
	Chapter No. 11. Paleobotany – Paleobotanical records, plant fossils, preservation of plant fossils – impressions, compressions, petrification's, moulds and casts, pith casts, radiocarbon dating.	
	Chapter No. 12. Fossil taxa – <i>Rhynia</i> , <i>Lepidodendron</i> , <i>Lepidocarpon</i> , <i>Lyginopteris</i> and <i>Cycadeoidea</i> . Exploration of fossil fuels. Birbal Sahni Institute of Paleosciences	

References

- 1. Andrews, H. N. (1961): Studies in Paleobotany, Wiley, N. Y.
- 2. Arnold, C. A. (1947): An introduction to Paleobotany, McGraw Hill, N. Y.
- 3. Bhatnagar, S. P. and Alok, M. (1996): Gymnosperms, New Age, Delhi.
- 4. Bierhost (1971): Morphology of vascular plants, Mac Millan, New York.
- 5. Biswas, C. and Johri, B. M. (1997): The Gymnosperms, Narosa, Delhi.
- 6. Bold, H. C., Alexopoaulos, C. J. and Delevoryas, T. (1980): Morphology of plants and fungi, Harper and Row, N. Y.
- 7. Bower, F. O. (1935): Primitive Land Plants.
- 8. Campbell D. H. (1990): The evolution of land plants: origin of land flora.
- 9. Campbell, D. H. (1905). The Structure and Development of Mosses and Ferns.
- 10. Chamberlain, C. J. (1935): Gymnosperms-Structure and evolution, Chicago Univ. Press, Chicago.
- 11. Datta, S. C. (1973): An introduction to Gymnosperms, Asia Publ. House, Bombay.
- 12. Foster, A. S. and Gifford, Jr E. M. (1974): Comparative morphology of Vascular plants, Freeman, Sanfransisco.
- 13. Frans Verdoorn (1932): Manual of bryology.
- 14. Kato and Akiyama (2005): Origin of sporophyte of land plants.
- 15. Parihar, N. S. (1965): An Introduction to Embryophyta. Vol. I. Bryophyta.
- 16. Parihar, N. S. (1977): The Biology and Morphology of Pteridophytes, CBD, Allahabad.
- 17. Rashid, A. (1986): An introduction to Pteridophytes, Vikas, New Delhi.
- 18. Russel T. H. (1990): Moss and Liverworts.
- 19. Smith G. M. (19380): Cryptogamic Botany Vol-II & Bryophytes and Pteridophytes.
- 20. Sporne, K. R. (1969): Morphology of Gymnosperms, Hutchinson Univ, London.
- 21. Sporne, K. R. (1970): Morphology of Pteridophytes, Hutchinson Univ, London.
- 22. Vasishtha B.R and others. Bryophytes S. Chand and Co New Delhi
- 23. Walton, J. (1953): An introduction to the study of fossil plants.
- 24. Watson V. (1971): Structure and life of Bryophytes.

DSC2: 21BSC2C2BOT2P: DIVERSITY OF NON-FLOWERING PLANTS

Course Title: Diversity of non-flowering plants	Course code: 21BSC2C2DPP	
Total contact hours: 56	Course credits –02	
Internal Assessment: 25 marks	Duration of SEE: 03 hours	
Semester end Examination Marks: 25 marks		

Course Outcome (COs)

CO I: Obtain laboratory skills/explore non-flowering plants for their commercial applications.

List of experiments Study of morphology, classification, reproduction and life-cycle of *Nostoc / Oscillatoria* Study of morphology, classification, reproduction and life-cycle of *Oedogonium and Chara, Sargassum, Polysiphonia* Preparation of natural media and cultivation of soil algae Study of morphology, classification, reproduction and life-cycle of *Riccia* and *Anthoceros* Study of morphology, classification, anatomy, reproduction and life-cycle of *Selaginella* and *Equisetum* Study of morphology, classification, anatomy, reproduction and life-cycle of *Pteris* and *Azolla* Preparation of natural media and cultivation of *Azolla* in artificial ponds Media preparation and cultivation of *Spirulina* Study different algal products and fossils impressions and slides Study of morphology, classification, anatomy and reproduction in *Cycas*

- 11. Study of morphology, classification and anatomy, reproduction in *Pinus*
- 12. Study of morphology, classification and anatomy, reproduction in Gnetum
- 13. Study of important blue green algae causing water blooms in the lakes
- 14. Visit to algal cultivation units / lakes with algal blooms / Fern house / Nurseries / Geology museum / lab to study plant fossils.

(Note: Botanical study tour to a floristic rich area for 1-2 days and submission of study report is compulsory)

OEC2: Biofertilizers and Biopesticides

Course Title: Biofertilizers and Biopesticides	Course code: 21BSC2O2BO2
Total contact hours: 56	Course credits –04
Internal Assessment: 40 marks	Duration of SEE: 03 hours
Semester end Examination Marks: 60 marks	·

Course Outcome (COs)

At the end of the course, student will be able to understand

- 1. The roles of Bio-pesticides and Bio-fertilizers are used widely by the agricultural society Biofertilizers supplement the requirements of fertilizers. Ability to distinguish the types of biofertilizers
- 2. Biological Pesticides are natural pest control agents that are obtained from natural substances
- 3. Biofertilizers are live products (or latent cells of microbes) and require care in storage, transport, application and maintaining field conditions.
- 4. Ability to distinguish the types of biofertilizers. These are eco-friendly and renewable resources.
- 5. Accelerate some biochemical processes and make more nutrients available to the crops. This will improve seed germination and produce thicker roots.
- 6. In the economy, bio-fertilizers are cost-effective and they also have low manufacturing costs, especially when it comes to nitrogen and phosphorus use
- 7. To create self-employment opportunities

Unit	Course content	hours
1	Biofertilizers : A general account of the microbes used as biofertilizers for various crop plants and their advantages over chemical fertilizers – Azospirillum, Azatobacter, Frankia, Phosphobacteria and Rhizobium.	11 hrs
2	Mass production of microbes: Isolation, characterization, mass inoculum production, field	11 hrs

	applications of Phosphobacteria, Rhizobium, Azospirillum, and Azatobacter.	
3	Cyanobacteria as biofertilizers : A general account of Anabaena, Cylindrospermum, Gleocapsa, Lyngbya, Nostoc, Plectonema, and Tolypothrix. Symbiotic association of cyanobacteria with crop plants. Field application of cyanobacterial inoculants.	11 hrs
4	Mycorrhizal Biofertilizers : Importance of mycorrhizal inoculum, types of mycorrhizae and associated plants. Mass inoculum production of AM Fungi, field applications of Ectomycorrhizae, and AM Fungi. Applications of Mycorrhizae.	11 hrs
5	Biopesticides and Bioinsecticides : Definition, introduction, importance, and limitations of biopesticides and their advantages over synthetic pesticides. Biocontrol of plant diseases, Fungal and bacterial biopesticides- Trichoderma, <i>Bacillus thuringiensis</i> . Viruses, Bacteriaand Fungi, Neem plant as insecticides.	11 hrs
3. 4. 5.	Inc San Die go USA Lakshman, HC. and Channabasava A. (2014) Biofertilizers and Biopesticides. Pointer Publishers, Rajasthan. Stewart WDP and Gallon JR 1980: Nitrogen fixation. Academic Press, New York.	ic Press
	Subba Rao NS (1982) Advances in Agricultural Microbiology. Oxford & IBH Publishing Co. PVT Lto Delhi Subba Rao NS (2002) Soil Microbiology. 4th ed. Soil Microorganisms and plant growth Oxford & Publishing Co. Pvt Ltd., New Delhi Subba Rao NS and Dommergues YR (1998) Microbial interactions in Agriculture and Forestry Vo Oxford & IBH Publishing Co. Pvt Ltd., New Delhi	IBH
	Verma A (1999) Mycorrhiza. Springer Verlag, Berlin). Ilan chet (Ed.). Innovative approaches to plant disease control. Wiley Inter Science Publication, I	hon

<u>CBCS Question Paper Pattern for UG Semester End</u> <u>Examination with effect from the AY 2021-22</u>

Languages /Discipline Core Courses (DSC) & Open Elective Courses (OEC)

Paper Code:	Paper Title:	
Time: 3 Hours		Max. Marks: 60
Instruction: Answer all Sections		
	SECTION-A	
1. Answer the following sub-questio	ns, each sub-question carries ONE mark.	(10X1=10)
a).		
b).		
c).		
j).		
Note for Section-A: Two sub-question	ons from each unit.	
	SECTION-B	
Answer any FOUR of the following q	uestions, each question carries FIVE marks.	(4X5=20)
2.		
3.		
4.		

5.

6.

7.

Note for Section-B: Minimum One question from each unit (Q No 2 to 6) and remaining one question from unit II to V (Q.No. 7)

SECTION-C

Answer any **<u>THREE</u>** of the following questions, each question carries **TEN** marks. (3X10=30)

8.

9.

10.

11.

12.

Note for Section- C: One question from each unit. Sub-questions such as 'a' and 'b' may be given for a question in section-C only.

SEC & AECC Subjects

Paper Code:

Paper Title:

Time: 1 Hours

Max. Marks: 30

There shall be Theory examinations of Multiple Choice Based Questions [MCQs]with Question Paper of A, B, C and D Series at the end of each semester for AECCs (Environmental Studies and (ii) Constitution of India) and SECs (SEC-1: Digital Fluency, SEC-2: Artificial Intelligence, SEC-3: Cyber Security and SEC-4: Societal Communication) for the duration of One hour (First Fifteen Minutes for the Readiness of OMR and remaining Forty-Five Minutes for Answering thirty Questions). The Answer Paper is of OMR (Optical Mark Reader) Sheet.

PRACTICAL EXAMINATION QUESTION PAPER AND SCHEME OF EVALUATION

Course: Diversity of non-flowering plants Course code: 21BSC2C2DPP Time: 3 hrs Max Marks: 25 QUESTION PAPER

DIVERSITY OF NON-FLOWERING PLANTS

1.	Identify and classify the specimens A, B and C	06
2.	Conduct the experiment as per slip D.	06
3.	Mounting/ Temporary slide preparation of given material E	02
4.	Comment/Preparation of temporary slides F, G and H	06
5.	Record and submission of Field Visit Report	05

Scheme of Evaluation

- A-Bryophytes, B-Pteridophytes, C-Gymnosperms (3x2=6 marks) Identification and classification-1 mark, Reasons-1 mark
- D- Cultivation of soil algae/cultivation of *Azolla*/cultivation of *Spirulina*(06 marks)
 Preparation of Media- 03 marks, Cultivation Procedure -03 marks
- E- Mounting of given algal specimen (02 marks)
 Mounting of the specimen-01 marks, Identification and Reasons-01 marks
- 4. F- Pollen grain of Pinus or Gnetum, Mounting-01 marks, Reasons-01 marksG- Sporangia of Pteridophytes, Mounting-01 marks, Reasons-01 marks

H-Fossils photograph or Impressions of Pteridophytes or Gymnosperms

Identification-01 mark, Reasons- 01 mark

Record and submission of Field visit report (05 marks)
 Practical Record- 03 marks, Field visit report -02 marks
