

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY JNANASAGARA CAMPUS, BALLARI-583105

Department of Studies in

Electronics

II Semester Syllabus

Bachelor of Science

With effect from 2021-22 and onwards

Semester-II

DSC 2: Electronic Circuits

Course Title: Electronic Circuits	Course code: : 21BSC2C2ECL	
Total Contact Hours: 55	Course Credits: 04	
Internal Assessment Marks: 40 marks	Duration of SEE: 03 hours	
Semester End Examination Marks: 60 marks		

Course Outcomes (CO's):

At the end of the course, students will be able to:

- Analyze power supplies (ADVANCED).
 Design different Transistor Biasing Systems.
- 3. Explain Basics Of Amplifiers.
- 4. Explain power amplifier and feedback amplifier.

DSC 2: Electronic Circuits

Unit	Descriptio	Hour
	n	S
1	 DC Regulated power supplies: Block diagram of regulated power supply, Rectification: Half wave rectifier, center tapped Full wave rectifier and Bridge rectifier-determination of efficiency and ripple factors. Filters: function of Series inductor filter, shunt capacitor filter, LC filter and CLC / filter. Voltage regulators: zener diode regulator, series transistor and shunt transistor regulator and IC regulator 78XX and 79XX series. LM 317 &337 regulator, SMPS. 	11
2	 Transistor Biasing: Need for biasing, essentials of transistor biasing DC load line Analysis, Operating point- determination of operating point-problems. Temperature effect on Q-point, Thermal Runaway. Stability factor-definition & importance Biasing circuits: - designing , stability factors of the following biasing circuits. Base resister bias / fixed bias Base bias with emitter Feed back Base bias with collector feed back Voltage divider/ universal biasing method. Problems. 	11
3	Single stage transistor amplifier and Multistage transistor amplifier: CE amplifier with voltage divider network- circuit, function and AC equivalent circuits. Hybrid parameter- definitions, CE, CC & CB hybrid equivalent models and expressions. Derivations for voltage gain, current gain, input impedance and output impedance of CE amplifier in terms of h- parameters.	13

	classification of	
	amplifier based on different parameters, different amplifier	
	couplings and their comparison	
	RC-coupled two stage amplifier freqresponse and band width	
	advantage of RC coupled amplifier	
	Transformer coupled amplifier –freq. response	
	Emitter follower circuit - construction, working and analysis. Darling	
	tonpair of transistors.	
	Power amplifiers:	
	Transistor audio power amplifier. Difference b/w voltage and power	
	amplifiers	
4	Transformer coupled class –A power amplifiers –expression for	
	maximum efficiency	10
4	Class-B push -pull amplifiers -power efficiency of amplifiers ,	10
	cross over distortion & harmonics distortion, complementary	
	symmetry push pull amplifiers.	
	Concept of heat sink used in power transistor, single tuned	
	amplifiers.	
	Feed back in amplifier:	
	Concept of feed back in amplifiers - positive & negative feedback	
	Effect of -ve feed back on amplifier characteristics - expression	
5	forvoltage gain, input impedance, output impedance & band width	10
	Comparative study of negative feedback on amplifiers	
	characteristics with positive feedback.	
Refere	nces:	
1. Electi	ronic devices & circuits - Jacob Millman & Halkias,	
2. Elect	ronic device & circuits theory - Robert Boylsted & Louis	
	sky3.Fundamental of electronics – B. Basavaraj	
	ed electronics – R S Sedha	
<u> </u>		

Semester-II

DSC 2: Electronic Circuits Lab

Course Title: Electronic Circuits Lab	Course code: 21BSC2C2ECP
Total Contact Hours: 56	Course Credits: 02
Internal Assessment Marks: 25	Duration of SEE: 03 hours
Semester End Examination Marks: 25	

Course Outcomes (CO's):

At the end of the course, students will be able to:

- 1. Make connections using breadboard.
- 2. Design Different Power Supply Systems Using IC's.
- 3. Design Amplifier Circuits and analyze their Performance.
- 4. Analyze Performance Of power Amplifier Circuits and Feedback Systems

DSC 2: Electronic Circuits Lab

List of Experiments

- 1. Half- wave rectifier determination of ripple factor with & without shunt capacitorfilter.
- 2. Full -wave rectifier determination of ripple factor with & without shunt capacitorfilter.
- 3. Bridge- rectifier determination of ripple factor with & without shunt capacitor filter.
- 4. Zener diode voltage regulator- load regulation curve.
- 5. Series Transistor voltage regulator- load regulation curve.
- 6. IC 78xx regulated power supply- load regulation curve.
- 7. IC 79xx regulated power supply- load regulation curve.
- 8. Single stage RC coupled amplifier- frequency response curve.
- 9. Emitter follower- determination of voltage gain, current gain, input impedance andoutput impedance.
- 10. Determination of hybrid parameters for the CE amplifier.
- 11. Complementary symmetry push pull amplifier.
- 12. Single tuned amplifier frequency response.

Note:

- 1. Minimum of EIGHT experiments must be carried out.
- 2. Experiments may be added as and when required with the approval of BoS.

References:

- 1. Basic Electronics: A Text-lab Manual By Paul B. Zbar, Albert Paul Malvino
- 2. Experimental electronics by S.V. Subramanyam.

Name of the Department:

ElectronicsSemester-II

OEC 2: Electronic Instruments and Measurements

Course Title: Electronic Instruments and Measurements	Course code: 21BSC2O2EL2
Total Contact Hours: 42	Course Credits: 03
Internal Assessment Marks: 40 marks	Duration of SEE: 03
Semester End Examination Marks: 60 marks	

Course Outcomes (COs):

At the end of the course, students will be able to:

- 1. Describe the conversion of basic meters.
- 2. Explain the functions of all the knobs of CRO.
- 3. Make the cable connectors to CRO and Function generator.
- 4. Identify the all waveforms with their measurements.

OEC 2: Electronic Instruments and Measurements

Unit	Descriptio	Hour
		S
	DC and AC Measurement:	
	Basic D'Arsonval meter construction and working principle of operation.	~~
1	DC measurement: conversion of basic meter into DC voltmeter and	09
	ammeter. Concept of ohmmeter and multimeter, AC measurement:	
	voltmeter,	
	ammeter. Digital type voltmeters, digital multimeter.	
	Signal Generators:	
0	Signal Generators-Types of generators and their operation: Audio	09
2	oscillator, Function generators, Pulse generators, RF generators,	
	Random noise	
	generators, Sweep generator. Probes and Connectors: Test leads,	
	shieldedcables, connectors.	
	Electronic Displays:	
3	Electronic Displays: Cathode Ray Oscilloscope (CRO) and	08
3	applications:Block diagram of a General Purpose Oscilloscope and its basic operation,	00
	electrostatic focusing and deflection, screens for CRT, CRO probes.	
	Typesof CRO's: dual trace oscilloscope, digital storage oscilloscope, Demonstration of generators:	
	Demonstration of basic generators likeAudio oscillator, Function	
4	generators, Pulse generators, RF generators, types of waveforms like	08
4	sine wave, square wave, triangular waves with symmetrical and	00
	asymmetrical types to be	
	observed by the help of CRO.	

5	Demonstration of CRO: Demonstration of CRO with front panel diagram for single trace oscilloscope, familiarization of all the knobs in the CRO with their function, measurement of Time, Amplitude, Frequency of a wave, measurement of Phase with Lissajous Figures.	08	
	References: 1. A course in Electronics and Instrumentations - by A .K. Sawhney.		
 Principles of electrons – by V.K. Mehta Fundamentals of electrical &electronic engineering by B L Theraja. 			

4. Electrical circuits & application - B.Grob.

CBCS Question Paper Pattern for UG Semester End Examination with effect from the AY 2021-22

Languages /Discipline Core Courses (DSC) & Open ElectiveCourses (OEC)

Paper Code:

Paper Title:

Time: 3 Hours

Max. Marks: 60

Instruction: Answer all Sections

SECTION-A

 Answer the following sub-questions, each sub-question carries <u>ONE</u> mark. a). 	(10X1=10)
b).	
c).	
d).	
e).	
f).	
g).	
h).	
i).	
j).	

Note for Section-A: Two sub-questions from each unit.

SECTION-B

Answer any FOUR of the following questions, each question carries FIVE marks. 2.	(4X5=20)
3.	
4.	
5.	
6.	
7.	

Note for Section-B: Minimum One question from each unit (Q No 2 to 6) and remaining one question from unit II to V (Q.No. 7)

SECTION-C

Answer any <u>**THREE**</u> of the following questions, each question carries **TEN** marks. (3X10=30) 8.

9.

10.

11.

12.

Note for Section- C: One question from each unit. Sub-questions such as 'a' and 'b' may be given fora question in section-C only.

SEC & AECC Subjects

Paper Code:

Paper Title:

Time: 1 Hours

Max. Marks: 30

There shall be Theory examinations of Multiple Choice Based Questions [MCQs]with Question Paper of A, B, C and D Series at the end of each semester for AECCs (Environmental Studies and (ii) Constitution of India) and SECs (SEC-1: Digital Fluency, SEC-2: Artificial Intelligence, SEC-3: Cyber Security and SEC-4: Societal Communication) for the duration of One hour (First Fifteen Minutes for the Readiness of OMR and remaining Forty- Five Minutes for Answering thirty Questions). The Answer Paper is of OMR (Optical Mark Reader) Sheet.

B.Sc. Electronics Labs Semester End Examination Evaluation Scheme

Max. Marks: 25

SI.No	Attribute	Marks
•		
1	Laboratory Record	05
2	Circuit Diagram and Tabular column	05
3	Connection and Performance	05
4	Graph and Calculation	05
5	Result	02
6	Viva Voce	03
	Total	25
